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ABSTRACT

Virtual reality (VR) has become an increasingly popular way for
learning and training. The assessment of the amount of mental ef-
fort, or cognitive load required to perform a task, is essential to cre-
ate adaptive VR experiences. In this work, we conducted a large-
scale study (N=738) to collect behavioral and physiological mea-
sures under different cognitive load conditions in a VR environ-
ment, and developed a novel machine learning solution to predict
cognitive load in real time. Our model predicts cognitive load as
a continuous value in the range from 0 to 1, where 0 and 1 corre-
spond to the lowest and highest reported cognitive loads across all
participants. On top of the point estimation of cognitive load, our
model quantifies prediction uncertainty using a prediction interval.
We propose a novel dual-branch attention model to accurately pre-
dict the cognitive load. We achieve a MAE (Mean Absolute Error)
of 0.11. The result indicates that, with a combination of behavioral
and physiological indicators, we can reliably predict cognitive load
in real-time, without calibration. To support further research, we
are releasing a test dataset comprising data from 100 participants
for use by researchers and developers interested in machine learn-
ing, virtual reality, learning & memory, cognition, or psychophysi-
ology. This dataset includes recordings from multiple sensors (in-
cluding pupillometry, eye-tracking, and pulse plethysmography),
self-reported cognitive effort, behavioral task performance, and de-
mographic information on the sample.

Index Terms: Virtual Reality, Cognitive Load, Physiological Sig-
nals, Machine Learning

1 INTRODUCTION

Virtual reality (VR) is revolutionizing learning and training by of-
fering individuals the ability to safely engage in novel experiences
from their home or office. Cognitive load, which refers to the men-
tal effort required to process information, often interferes with the
fundamental goals people have when using VR, such as immer-
sive learning or skill development. High cognitive load can over-
whelm users, impairing their ability to retain information and com-
plete tasks efficiently, especially in educational settings [33]. Re-
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search on immersive virtual reality learning demonstrates how fac-
tors such as presence, user agency, cognitive and emotional influ-
ences, and haptic feedback shape learning outcomes in these envi-
ronments [33, 43]. In our work, we aim to introduce a new genera-
tion of adaptive VR training tools that personalize the experience in
real-time, responding to the individual’s mental state. To bring this
vision to life, we are developing an AI-driven “inference engine”
that uses physiological sensors embedded in the head-mounted dis-
play to monitor and interpret cognitive load in VR.

Cognitive load, has been studied by researchers interested in
learning and performance for over a century [11, 37, 56, 59, 63].
Every person has their own information processing capacity (also
called working memory capacity or short-term memory), and it is
fixed (unchanging) [4], limited (small capacity) [14,42], and varies
from person to person [17,41]. Overwhelming our cognitive capac-
ity hampers effective processing. If the load is too much, compre-
hension stalls; if too little, it may not be worth the efforts.

Physiological measures such as pupillometry, eye tracking and
cardiac activity have been proven to be useful indicators of emo-
tion, sentiment, and cognitive load [28, 29, 50, 53]. In our study,
we aim to capture this information from reliable sensors integrated
in a head-mounted display while participants perform various tasks
requiring different amounts of cognitive load in a VR setting. Our
goal is to develop a solution that could reliably predict cognitive
load in the general population through physiological signals. We
designed a study with a series of tasks to stimulate different levels of
cognitive load from participants and passively recorded their phys-
iology, tracked their performance, and collected self-report data.
Our approach differed from past research in a number of ways, and
included novel innovations from other “cognitive workload” solu-
tions. First, our sample is larger (N=738) and more diverse (across
four continents) than previous studies. To minimize sampling bias,
we intentionally chose a diverse population with variance in age,
educational level, and race/ethnicity rather than a homogeneous one
to account for individual differences [44, 47]. Second, our feature
selection process focused on robustness versus parsimony. It was
more important that we could reliably predict cognitive load under
a variety of user and task conditions. Third, we wanted a real-time,
calibration-free solution, which required important innovations in
signal processing, labeling, and feature engineering. In general,
commercial systems that predict mental workload do so post-hoc,
during some type of after-action-review (e.g., a user’s cognitive
load is estimated by subtracting responses during a task from some
type of baseline or calibration task).

We design a machine learning model and train it with paired
input physiological signals and cognitive load labels. The model
fuses information across the signals to predict a probabilistic dis-
tribution of cognitive load. The mostly likely cognitive load value
with an interval is derived from the distribution to represent the fi-
nal prediction result. Cognitive load is a complex construct which
is related to both individual cognitive capacity and the task being
performed. Particularly, different people may experience differ-
ent cognitive load while performing the same task and the experi-



enced cognitive load changes across tasks of various difficulty lev-
els. Given this, we use both subjective cognitive load ratings and
task difficulties as labels to train the model. Our solution is unique
on a few aspects. First, our model predicts real-valued cognitive
load while the majority of other cognitive load prediction solutions
predict only the coarse levels of cognitive load. Second, our model
is designed and trained with dual targets, subjective cognitive load
and objective task difficulty, which implicitly captures the mixture
distribution of cognitive load in different context. Third, rather than
outputting a single value, we estimate a probabilistic distribution of
cognitive loads to quantify prediction uncertainty due to individual
difference in cognitive load manifestation.

Our cognitive load “inference engine” has been integrated into
commercial VR headsets and is widely utilized by researchers and
developers across academia and industry in a variety of VR applica-
tions. With this paper, we release a subset of our dataset (N=100)1

with the larger scientific community for validation of our models
and to seed new research ideas. We hope researchers in the field of
virtual reality, psychophysiology, cognitive, and learning will find
these data useful and fruitful.

2 RELATED WORK

2.1 Cognitive Load
Research shows that cognitive load is an important predictor of
learning, memory, performance, stress, and burnout [3, 24, 35, 42,
55]. An examination of the theoretical underpinnings of cognitive
load, particularly cognitive load theory [56], can provide insight
into why. Cognitive load theory suggests that successful comple-
tion of any task (large or small) relies on the complex interplay be-
tween sensory inputs, long-term memory (acting as a repository of
previously acquired knowledge and skills), and working memory.
Working memory acts as an intermediate state between sensory and
long-term memory, attaching meaning to the sensory information
by integrating newly learned information into longer-term memory.
Both sensory and long-term memories have flexible capacities and
are capable of processing large volumes of information. Working-
memory, on the other hand, is comparatively limited [4,17]. Atten-
tion manages the function of working memory by guiding it to rel-
evant sensory information and stored knowledge, thereby directing
the learning process and increasing (or decreasing) the efficiency
of working memory [41]. An individual’s cognitive load in each
moment is an amalgam of these attentional, sensory, and memory
processes. When we measure cognitive load, we are estimating the
amount of mental resources being utilized to complete the task at
hand.

2.2 Indicators of Cognitive Load
The quest to understand human cognition has driven researchers to
seek reliable and objective indicators of cognitive load, bypassing
the need to inquire about participants’ experiences.

Measures of the peripheral nervous system and eye-tracking be-
havior serve as more reliable and generalizable indicators of mental
effort [20]. Cardiovascular measures such as blood pressure [46],
heart rate [18, 19, 21, 26], and high-frequency heart rate variability
[15, 18] have been shown to reliably estimate changes in cognitive
load levels. Similarly, electrodermal activity (EDA), also referred to
as skin conductance [23,51], and pupillometry, the measure of pupil
dilation, have been proven to be reliable indicators [42]. Multiple
studies have established a strong correlation between task demands
and pupil dilation [9, 31]. Additionally, electroencephalography
(EEG) is a non-invasive method that captures the brain’s electri-
cal activity. By examining specific EEG patterns and frequencies,
researchers can gauge the brain’s responses to different cognitive

1data access link: https://developers.hp.com/omnicept/

read-me-cognitive-load-open-dataset

demands [12,62]. Certain brainwave frequencies might intensify or
diminish based on the cognitive load, making EEG a valuable tool
for understanding the nuances of human cognition under varying
challenges.

Some researchers have attempted to estimate cognitive load un-
obtrusively by recording and categorizing participants’ facial ex-
pressions during the task [1, 9, 52]. Unfortunately, facial expres-
sions have been unreliable indicators for both practical (dynamic
facial expressions can be difficult to infer [13]) and theoretical (the
categories themselves are up for debate [7]) reasons. Researchers
have explored acoustic features of the voice [10] to predict cogni-
tive load. However, findings do not reliably generalize across cog-
nitive load tasks [54]. Moreover, individuals don’t always vocalize
during tasks.

2.3 Cognitive Load Inference with Machine Learning
Physiological indicators sensitive to cognitive load enable real-time
cognitive load estimation. Researchers have developed various ma-
chine learning algorithms for this purpose, leveraging features from
different physiological signals. Commonly used algorithms in-
clude k-nearest neighbor (kNN), naı̈ve Bayes (NB), logistic regres-
sion, linear discriminant analysis (LDA), support vector machines
(SVM), ensemble methods (e.g., random forest, XGBoost), and
neural networks. These machine learning models are trained to pre-
dict users’ cognitive load based on physiological features from one
or multiple signal modalities. For example, Nourbakhsh et al. [40]
used SVM and NB to train a cognitive load prediction model based
on skin conductance and blink features. Haapalainen et al. [21]
trained NB to classify three levels of cognitive load using electro-
cardiogram (ECG) and eye movement features. Jimenez-Molina
et al. [27] employed logistic regression, SVM, and neural network
models based on features from EDA, ECG, pulse plethysmography
(PPG), EEG, temperature, and pupil dilation signals.

Cognitive load and psycho-physiological research indicate that
different signal modalities provide complementary and overlapping
information. For example, increased cognitive load may cause
accelerated heart rate with reduced variability [2, 21], pupil di-
lation [42], more saccades [9], or increased blink activity [45].
Multi-modal fusion enhances cognitive load prediction by integrat-
ing these correlated physiological responses, offering a clearer pic-
ture of autonomic nervous system activity than any single signal.
Additionally, fusion improves robustness by reducing noise effects
and capturing responses that unfold at different timescales, such as
pupil dilation and pulse transit time.

Common multi-modal fusion strategies in machine learning in-
clude feature-level fusion (early fusion), decision-level fusion (late
fusion), and hybrid fusion. Studies such as [2, 18, 27] have used
feature-level fusion to combine features from different signals,
while Islam et al. [25] merged features to predict drivers’ mental
workloads. Zhang et al. [64] explored decision fusion for more
robust predictions, and also experimented with hybrid fusion. Re-
cently, neural networks have shown promise for cognitive load pre-
diction. Sarkar et al. [49] used a multitask deep neural network
with ECG signals, and Saha et al. [48] applied LSTM and MLP
with EEG signals. These studies indicate that deep learning models
outperform traditional approaches like kNN, SVM, and LDA.

3 COGNITIVE LOAD STUDY AND DATA COLLECTION

3.1 Consent for Human Subjects Research
We implemented a comprehensive internal review process to ensure
ethical research practices and participant protection, given that this
research fell outside the scope requiring formal Institutional Review
Board (IRB) oversight at our institution. Our protocol underwent
thorough evaluation by HP Legal and HP Privacy to verify com-
pliance with data protection regulations and research ethics stan-
dards. All participants provided informed consent prior to study
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Table 1: Demographic Characteristics of the Sample

Demographic Category Percentage of Sample

Education
Elementary School 4%
High School 25%
College 61%
Graduate Degree 10%

Age Range
18-24 17%
25-34 42%
35-49 34%
50-64 6%

Gender
Female 48%
Male 52%

Race/Ethnicity
Caucasian 81%
African 9%
Asian 1%
Multiracial 9%

enrollment, with clear documentation of how their data would be
collected, used, and protected. The consent process detailed partici-
pants’ rights, including the ability to withdraw from the study at any
time and have their data removed. Data handling procedures incor-
porated privacy-preserving measures, including data minimization,
secure storage protocols, and restricted access controls. All person-
ally identifiable information was encrypted and stored separately
from research data using industry-standard security measures.

3.2 Participants
738 participants were recruited from various communities for this
experiment. The age range of the participants was between 19 and
61. Participants did not report ophthalmological conditions (other
than corrected vision). Participants received a payment in local cur-
rency as remuneration for participating in the study. All participants
received detailed information about the nature of the study, their
role, and how their data would be managed, stored, used to develop
new products, and published as a part of this open dataset. Each
participant gave their informed consent.

3.3 Design and Procedure
Participants completed a series of tasks presented in a randomized
order, designed to require different levels of mental effort, or cog-
nitive load (CL), to complete. Three CL levels were manipulated
(low, medium, and high), and each level was repeated three times
(3 low trials, 3 medium trials, 3 high trials), in a random order, for
a total of nine trials (Fig. 1). At the end of each trial, participants
rated how mentally demanding they found the task (Fig. 1). We
drew inspiration for the cognitive load stimuli from the study out-
lined in [8]. The tasks, spanning multiple modalities, were designed
to induce cognitive load across a spectrum from the easiest to the
most challenging, reflecting real-world scenarios.

In a low CL trial, participants completed a visual vigilance task
in which five balls appear in the scene. The ball to be tracked is
briefly highlighted in a different color. The ball then move in a ran-
dom, diverging pattern around the screen, and eventually settle in
one of five spots on the screen (labelled A through E, see Fig. 1 A).
The users need to indicate where the target ball landed. In the
medium CL trial, participants completed the same visual vigilance
task while also performing an arithmetic task. Numbers would pro-
gressively be presented to the screen while the balls were in motion

Figure 1: Example stimuli from the cognitive load task. In each
trial, participants perform tasks designed to induce varying levels
of mental effort: low, medium, and high. Box A illustrates a low-
effort trial, where participants track a single ball moving randomly
on the screen and report which one they tracked once it stops. Box
B shows a medium-effort trial, where participants track a ball and
solve mental math problems appearing randomly, then report both
the tracked ball and their math answer. Box C depicts a high-effort
trial, where participants track a ball, solve math problems, and mon-
itor a spinning wheel, reporting its direction when it stops. After
each trial, participants rate the mental demand of the task on a con-
tinuous scale from very low to very high. We use a unidimensional
scale subjective report due to its simplicity, which makes it easier
for participants to provide self-reports while requiring significantly
less time. This approach minimizes interruptions between cogni-
tive load trials.

(see Fig. 1 B). The numbers would disappear when prompted for a
response, which forced the users to perform the arithmetic task in
parallel with the visual vigilance task. In the high CL trial, a third
audio vigilance task was added (see Fig. 1 C). In this condition, the
subject is listening for an audio beep. An additional visual element
of a spinning wheel is layered into the scene, and the direction of
spinning randomly changes throughout the task. When the audio
prompt occurs, the subject should indicate using the corresponding
controller trigger which direction the green wheel is spinning.

The CL tasks are designed so that each level of task difficulty
is objectively more challenging, with the more difficult conditions
fully encompassing the easier ones. By layering these tasks and
requiring participants to perform them simultaneously, attention is
divided across tasks, thereby increasing the workload. In the low
difficulty condition, participants only engaged in the visual vig-
ilance task. In the medium difficulty condition, they performed
two tasks simultaneously: visual vigilance and arithmetic. In the
high difficulty condition, participants managed three tasks simulta-
neously: visual vigilance, arithmetic, and audio vigilance. This lay-
ered multi-tasking approach ensures an increase in task difficulty.
Performing a single task (low difficulty) is objectively easier than
performing the same task concurrently with a second task (medium
difficulty). Similarly, managing two tasks simultaneously (medium
difficulty) is objectively easier than managing the same two tasks
alongside an additional third task (high difficulty).

We have also designed tasks with neutrality in mind in order to
best mitigate demographic and individual factors (e.g., age, gender,
ethnicity, education) that can influence cognitive load. These tasks
were selected to minimize biases related to education or age, focus-
ing on universal cognitive processes such as memory and pattern
recognition.

Participants began the task with several practice trials to intro-
duce them to the procedure. The practice trials started with a low



CL trial. If participants failed to complete the task successfully
on the first practice trial, they were given two more tries to com-
plete the task. If successful, participants moved on to medium CL,
followed by high CL practice trials. If a participant failed to suc-
cessfully complete a practice trial after three tries, they skipped to
the next trial. This feature was added to ensure that participants had
relatively equal exposure to the stimuli and were in VR for roughly
the same amount of time (minimizing effects from fatigue and/or
VR sickness).

In the testing phase, participants were shown a total of nine tasks
(three low, three medium and three high) in a randomized order to
minimize carry over effects from the last trial. Because participants
were, at this point, familiar with the stimuli and virtual reality, we
expect that cognitive load effects from the testing phase are the re-
sult of our manipulations.

3.4 Setup and Materials
Participants completed a VR experience that was designed to stim-
ulate different levels of cognitive load while we passively recorded
data from multiple sensors. The experience was developed by
the authors in Unity3D and included a series of tasks similar to
the desktop-based stimulus media proposed by Bartels and Mar-
shall [8], but modified for VR.

3.5 Hardware VR Headsets

Figure 2: Sensor and Head-Mounted Display (HMD) set up for
data collection at the incubation stage. Box A features a modified
Vive Pro-Eye HMD with eye-tracking and pupillometry, along with
a PPG sensor attached between the lenses. Box B shows the PPG
sensor used to record data from the finger.

In the first stage, we used the HTC Vive Pro-eye head mounted
display with dual OLED 3.5” diagonal screen, 1440 x 1600 (pixel
per eye) resolution, 90Hz refresh rate, 110° field-of-view. The
Vive ProEye includes Tobii eye tracking (120Hz gaze output) and
pupillometry capabilities 2. To measure cardiac activity, we used
a BITalino (r)evolution wired pulse plethysmography (PPG) sensor
(bitalino.com). PPG was collected from the forehead, using a PPG
sensor affixed directly to the mask (Fig. 2, Box A) and from the
finger (Fig. 2, Box B).

In the second stage, we are able to use HP Reverb G2 Omnicept
Edition VR headset, which includes a state-of-the-art sensor system
that measures gaze, pupil size and pulse, and seamlessly transfers
data to the HP Omnicept VR Software platform.

Participants completed the experience described in 3.4 using the
above hardware. During the task, we collected performance from

2https://www.vive.com/us/product/vive-pro-eye/specs/

each task and, at the end of each trial, subjective ratings of cog-
nitive load (Fig. 1). Using a modified version of the NASA Task
Load Index (TLX), participants rated how “mentally demanding”
they found the task on a continuous scale from very low to very
high [22].

4 DATA PROCESSING

4.1 Pupilometry and Eye Tracking Data
We measured dilation of the pupil and tracked participants’ eyes
using a Tobii Eye Tracking system integrated in the HTC Vive Pro-
Eye (https://vr.tobii.com/integrations/htc-vive-pro-eye/). From To-
bii’s API, we were able to collect data on pupil position, pupil di-
ameter, gaze position, and gaze direction from participants as they
worked on the CL tasks.

To minimize the use of noisy pupil data in our dataset, we de-
vised a filtering mechanism based on the assumption that left and
right eye pupil dilation should be highly correlated. First, a running
average of the difference between left pupil dilation and right pupil
dilation is calculated over a 120 sample (1 second) rolling window.
Next, the standard deviation of the window is calculated. If the stan-
dard deviation exceeds a threshold, the window is considered too
noisy. We empirically selected the threshold as 0.3 since a higher
threshold compromises the data quality and a lower threshold leads
to a scarcity of usable data. The percentage of noisy windows in
a session is calculated by dividing the number of noisy windows
across the total number of windows. Then if the percentage of noisy
windows exceeds 30% of the overall data, the entire data associated
with the subject is excluded from training. All of the data included
in this dataset has passed this signal quality filter.

We focused primarily on pupillometry and rapid movements of
the eye between points (i.e., saccades) because research suggests
that these indicators are particularly sensitive to changes in cogni-
tive load and relatively context independent [20]. Gaze data, on the
other hand, is determined largely by the content presented (i.e., it is
situation specific) and is not, itself, a reliable indicator of cognitive
load. The Tobii output signals can be regarded as a multivariate
time series that captures the values of the indicators over time. Ta-
ble 2 includes a full list of features and details the sensor and the
feature family (e.g., pupil features, fixation features) of each fea-
ture. We used the multivariate time series (MTS) of six variables,
three for each eye (pupil diameter, pupil position on the x-axis, and
pupil position on the y-axis). The procedure we used to process
these signals and extract features is outlined below.

To enable real-time prediction of cognitive load, six-dimensional
raw data from the Tobii sensor was segmented using a sliding win-
dow approach. For each window, the minimum, maximum, mean,
and standard deviation of each dimension were calculated and up-
dated to correspond with the current timestamp. These summary
statistics from previous windows were utilized for real-time rolling
normalization. This data processing step mitigates individual vari-
ations at the raw data level, allowing for consistent thresholding in
detecting high-level features such as blinks, saccades, and fixations.

The signal from eye tracker also captured blinks, which intro-
duces unwanted interference. To detect and remove blinks, we used
guidance and techniques developed by Mathot, et al. [34] to identify
and reconstruct the signal loss from closing the eyes during blinks.
To start, we calculated standard deviation to normalize pupil diam-
eter signals in rolling windows. If, during a given time interval, the
standard deviation of pupil diameter was greater than a threshold of
0.4, we marked these as blink events. Once a blink event was iden-
tified, we calculated the longest blink duration, mean blink duration
and blink rate (Hz) and used these as our blink features. We finally
reconstructed the pupil data during a blink by removing the blink
events and filling in the missing data with interpolation.

Next, we captured the influence of cognitive load on pupil di-
lation. After blink removal and data interpolation, pupil diameter



Table 2: Full list of features organized by sensor and feature family

Sensor Feature
Family

Feature Unit

Pupilometry Pupil Size Pupil Diameter(mean) mm
Pupilometry Pupil Size Pupil Diameter(std) mm
Eye Tracking Blink Blink Rate Hz
Eye Tracking Blink Longest Blink Duration sec
Eye Tracking Blink Blink Depth sec
Eye Tracking Saccade Number of Saccades

(mean)
num./sec

Eye Tracking Saccade Number of Saccades
(std)

num./sec

Eye Tracking Saccade Path length degree
Eye Tracking Saccade Duration (mean) sec
Eye Tracking Saccade Duration (std) sec
Eye Tracking Saccade Saccade length

(longest)
sec

Eye Tracking Saccade Saccade length (sum) sec
Eye Tracking Saccade Saccade length (mean) sec
Eye Tracking Saccade Speed (mean) sec
Eye Tracking Saccade Speed (std) sec
Eye Tracking Saccade Speed (max) sec
Eye Tracking Saccade Rate Hz
Eye Tracking Fixation Duration (longest) sec
Eye Tracking Fixation Duration (sum) sec
Eye Tracking Fixation Duration (mean) sec
Eye Tracking Fixation Duration (std) sec
Eye Tracking Fixation

Saccade
Ratio

Rate -

PPG Heart Rate Interbeat Interval sec
PPG Heart Rate Standard Deviation of

Normal Beats
sec

PPG Heart Rate
Variability

Standard Deviation of
Successive Differences

sec

PPG Heart Rate
Variability

Root Mean Square of
Successive Differences

sec

PPG Heart Rate
Variability

Avg. Power Spec-
tral Density [0.0-0.2]
(mean)

-

PPG Heart Rate
Variability

Avg. Power Spec-
tral Density [0.2-0.4]
(mean)

-

PPG Heart Rate
Variability

Avg. Power Spec-
tral Density [0.4-0.6]
(mean)

-

PPG Heart Rate
Variability

Avg. Power Spec-
tral Density [0.6-0.8]
(mean)

-

PPG Heart Rate
Variability

Avg. Power Spectral
Density [1-2] (mean)

-

features were extracted by calculating the mean and standard devi-
ation of the pupil diameter data.

We further capture saccade information from the eye data. Sac-
cades are characterized by a quick, simultaneous movement of both
eyes in the same direction and can be detected by calculating rapid
changes in gaze direction. To calculate saccades in our data, we es-
timated the speed of gaze movement using pupil position data (e.g.
left pupil position in tracking area x, and left pupil position in track-
ing area y). Similar to blink detection, we started by selecting time
intervals when the speed of gaze movement exceeded a threshold.
For all saccade events within the data buffer, we calculate statisti-

cal features of each saccade, such as number of saccades within the
buffer, longest saccade, mean and standard deviation of the duration
of saccades (second), and saccade rate (Hz). We also calculate sta-
tistical features that describe the speed of eye movement, such as
maximum speed, mean and standard deviation of gaze movement
speed, gaze movement path length, total saccade duration (second),
and saccade rate (Hz).

Finally, we extract fixation events by selecting time intervals
when changes in gaze direction is below the threshold. For all
fixation events within the data buffer, we calculate statistical fea-
tures, such as number of fixations, longest fixation, and mean and
standard deviation of fixation durations (second), and fixation rate
(Hz). We also calculate different ratios of saccade features to fix-
ation features, such as the ratio of fixation rate over saccade rate,
ratio of longest fixation duration over longest saccade duration, ra-
tio of sum fixation duration over sum saccade duration, and ratio
of mean fixation duration over mean saccade duration. The global
minimum, maximum, mean, and standard deviation values of all
the extracted features for each individual were tracked and updated
from the start of recording until the end of the recording. All ex-
tracted features were normalized using the updated global statistics.

4.2 Pulse Plethysmography (PPG) Data

PPG is a light-based sensor that can measure heart activity by de-
tecting changes in blood flow at the location where the sensor
is applied to the skin (e.g., blood oxygenation and volume). In
this data collection experiment, we used a Bitalino (r)evolution
(http://bitalino.com) sensor board, with a PPG sensor applied to
the fingertip of participants. PPG sensors are a reliable and rela-
tively non-invasive way to estimate cardiac changes but the signal
is particularly prone to artifacts and other sources of noise. For ex-
ample, good contact between the sensor and the skin is necessary
for reliable readings, making PPG sensitive to changes in move-
ment. More complex sources of noise can occur because PPG mea-
sures the heart activity from pulses recorded in the periphery (arms,
wrists, foreheads, etc.) leading to variability in the time it takes
for the pulse to travel to the recording sight (called pulse transit
time, or PTT). PTT can differ depending on predictable internal
characteristics like a participants’ height, age, or the health of their
vasculature but PTT also varies with increased (or decreased) phys-
iological arousal in complex, difficult to measure ways. To account
for these sources of variability in the PPG signal, we developed a
six-step processing algorithm to extract features known to be re-
lated to tracking and estimating cognitive load.

To filter noise and capture the signal with cardiac information,
we used a bandpass FIR (finite impulse response) filter with a lower
cutoff frequency of 0.5Hz and an upper cutoff frequency of 5Hz.
Next, we used time-series decomposition tools for our analysis. In
our experiments, removing trend from the PPG signal helped in bet-
ter estimation of heart-rate features. We deconstructed the signal
using seasonal decomposition, which decomposes the signal based
on rates of change. This allowed us to remove slower moving com-
ponent series in the PPG signal, returning a detrended PPG signal.
The seasonal decomposition was performed using the statsmodels
package in python (statsmodels.org). We then detected peaks in the
detrended signal for calculating heart-rate features.

The prominent (Systolic) peaks in the PPG signal correspond to
heartbeats and the proper detection of peaks is the core to calculat-
ing accurate heartrate features. As a first pass, our peak detection
algorithm used the find peaks algorithm in SciPy to detect peaks
in the signal. However, the algorithm also detects secondary (di-
astolic) peaks, and other peaks resulting from noise. Elgendi [16]
demonstrated that skewness (a measure of symmetry) of the photo-
plethysmogram (PPG) signals is the optimal method for determin-
ing the quality of the signal and can be formalized into a signal
quality index (SQI). We used this SQI to further refine the peak de-



tection. Characteristic PPG signals have a skewed shape that can be
attributed to the systolic and diastolic peaks of the signal. Because
the systolic peak always occurs prior to the diastolic peak, in a tight
time range around the systolic peak (e.g. +/- 160ms), we expect
no influence of the signal from the diastolic peak, and therefore the
signal should be relatively symmetric and skewness relatively low.
If the skewness of the systolic peak exceeds this threshold, we fil-
ter the peak from the list because we assume that it is a false peak,
most likely a diastolic peak misclassified as a systolic peak. Next,
we consider an entire peak to peak interval. In this instance, both
the systolic and diastolic peaks should be influencing the signal,
causing a positive skewness (because the systolic peak should be
larger than the diastolic peak). If the skewness for the RR interval
is negative, the signal quality is low, and the RR interval is filtered
from the list.

Despite the previous filtering steps, it is still possible for the
diastolic peak to be misidentified as a systolic peak. To remove
these artifacts, we deploy an algorithm similar to Lipponen and
Tarvainen [30, 57, 58] that examines the RR series, which is a time
series of successive RR intervals. We compare the current interbeat
interval (IBI) to the 3 most recent IBIs. If the interbeat interval is
within a 150ms threshold of any of the 3 most recent IBIs, it is con-
sidered valid. If not, then we attempt to combine the current IBI
with the next IBI and recheck to see if the new combined IBI is
within the 150ms threshold.

Finally, with a full list of valid IBI intervals, it is trivial to com-
pute the heart rate, and pulse rate variability. Our features use a
sliding window to calculate both heart rate and pulse rate variability,
where heart rate = 1/avg (IBI) and pulse rate variability can be char-
acterized as the successive differences of normal beats (SDNB), and
root mean square of successive differences (RMSSD) over the time
window. Note that we use the term pulse rate variability instead of
heart rate variability since we are measuring heart activity through
the circulatory system, which layers a variable pulse transit time
(PTT) to the pulse rate variability statistic. We further calculate
power spectral density (PSD) features across the frequency bands
[0.0-0.2] Hz, [0.2-0.4] Hz, [0.4-0.6] Hz, [0.6-0.8] Hz, [1-2] Hz, to
capture information in the frequency domain. The PSD features
were calculated using Welch method [16].

4.3 Cognitive Load Normalization for ’Ground Truth’ La-
bels

One of the biggest challenges for predicting cognitive load in a con-
text independent way is that it is very difficult to ascertain “ground
truth” cognitive load levels. This is a challenge for data qual-
ity, especially label quality, because the machine learning model
is trained on the labeled data. The closer the labels are to the “true”
measure of interest, the more likely that the model will perform
well on unlabeled data. We have implemented a multi-pronged la-
beling approach (e.g., [5]) that combines indices of task difficulty
and subjective ratings of mental load to create a labeling paradigm
that most reliably represents the true level of cognitive load expe-
rienced by individuals in a given moment. Once we validated the
subjective ratings, we used them in combination with task difficulty
to label cognitive load for each individual trial.

Using z-score normalization, the resulting data distribution is
centered at 0 with 95% of the samples between [-2,2]. Our de-
sired score is between [0,1], so we transform the z-score using the
following formula.

In = Iz/4+0.5, (1)

where In represents normalized subjective rating, and Iz is the z
score rating. Although technically only 95% of the resulting sam-
ples are between the desired range of [0,1], this is sufficient for our
needs.

In our stimulus regime, task difficulty increases are additive.
Easier tasks are entirely contained within the more difficult tasks.

Figure 3: Density of labels separated by task difficulty

Table 3: Additive Difficulty Weighting by Task

Task Description Normalized Difficulty
Rating

Task 1: Visual Vigilance 0.25
Task 2: Visual Vigilance + Arithmetic 0.50
Task 3: Visual Vigilance + Arithmetic
+ Audio Vigilance

0.75

To represent this, we assigned each task a weighted difficulty rating
for each task (See Table 3 for values by task).

We then combine individual subjective rating with task averages
using a weighted sum

Rn = Tn ∗0.5+ In ∗0.5, (2)

where Rn, Tn, and In represent normalized subjective rating, popula-
tion wide normalized task rating, and individual normalized rating.
Fig. 3 illustrates the resulting distribution of labels for the different
cognitive load scores for each task difficulty condition. The dataset
labels are exclusively derived from the study itself, based on partic-
ipants’ subjective ratings and stimulus sampling. No expert labels
or third-party annotations are included, and the labels solely reflect
the participants’ first-person ratings of their subjective experiences.
Because we only have one subjective rating for the entire task, we
assume that the cognitive load score label is constant for the dura-
tion of the task.

5 MODELING

5.1 Model Selection
We trained a deep learning model to predict cognitive load as a con-
tinuous value between 0 and 1, representing the lowest and highest
reported cognitive loads. To handle multi-modal data, we use a
deep neural network instead of traditional methods like SVM. Deep
learning allows for feature and decision fusion, providing more in-
tegrated representations, and supports end-to-end training, elimi-
nating the need for separate feature extraction. Our architecture also
accommodates both regression and classification tasks, enhancing
versatility and efficiency.

Our study has three types of tasks, easy, medium, and hard,
which are expected to induce low, medium, and high cognitive loads
respectively. However, individual cognitive capacities cause sub-
jective load experiences to vary. Fig. 3 shows that the reported
cognitive loads approximately follow a Gaussian distribution with
respect to each type of task and the three distributions overlap with
each other. Collectively, the reported cognitive loads follow a distri-
bution with multiple modes. Regression with a multi-modal distri-
bution involves identifying the mode and regressing the offset from



Figure 4: Machine learning model architecture for cognitive load prediction from signals

Figure 5: Illustration of high-level representation learning through
sensor fusion

Figure 6: Depicts architecture from fused representation through
cognitive load distribution prediction to final prediction with uncer-
tainty

the mode center. Inspired by Multi-Bin loss regression [38], our ap-
proach predicts one of the three cognitive load levels and estimates
the residual relative to the average load of each level. Additionally,
we model prediction uncertainty by predicting a cognitive load dis-
tribution, such as a Gaussian distribution with mean and standard
deviation.

5.2 Training Data Preparation

Figure 7: Features sequence segments and corresponding labels.
We use three feature sequences to illustrate an arbitrary number of
n features extracted from raw signals.

To train our regression model, we constructed pairs of input fea-
ture sequences and the corresponding cognitive load labels. Using
the methods articulated in Section 4, we can convert raw signals to
temporal feature sequences. Fig. 7 shows how the input features

sequence x, and the output, subject cognitive load rating yr and task
difficulties yc, are paired.

The input feature sequences x are temporal multivariate data
derived from physiological signals, including pupilometry, eye-
tracking, and pulse plethysmography (PPG). The input x ∈ Rt×d

represents a sequence of d-dimensional features of length t, where
t is the time dimension and d represents the feature dimension. The
outputs include a real-valued normalized subjective cognitive load
rating yr ∈ [0,1] and a discrete task difficulty yc ∈ {0,1,2} repre-
senting the objective task difficulties of easy, medium, and hard,
respectively. These labels were derived from a combination of sub-
jective ratings and normalized task difficulties, as described in Sec-
tion 4. For data from each experiment trial, we begin extracting
data and label pairs only after the initial few seconds to eliminate
any unstable phase at the start of the trial. The input features and la-
bels were synchronized using a sliding window approach to ensure
temporal alignment. A typical sliding window size is 120 samples,
while the skip step for the rolling window is significantly smaller,
typically just 1 sample. This enables cognitive load predictions to
be made at each skip step.

5.3 General Model Architecture
The model architecture is shown in Fig. 4. Feature extraction and
representation learning use convolutional neural networks (CNNs)
to process physiological signals and capture temporal patterns. At-
tention mechanism weighs the importance of specific time steps or
features. Each CNN branch includes two 1D convolutional layers
with kernel size 3, followed by batch normalization, ReLU activa-
tion, and max pooling with kernel size 2. These layers extract and
downsample relevant features from each input modality. Global av-
erage pooling then condenses the feature maps into fixed-size 64-
dimensional vectors, enabling sensor fusion.

The sensor fusion step (Fig. 5) combines feature vectors from
two CNN branches into a unified 128-dimensional representation,
refined by a dual-branch attention mechanism. This mechanism
uses channel and spatial attention to emphasize key features and re-
duce noise sensitivity. Channel attention generates weights by pool-
ing across the temporal dimension and processing through an MLP,
while spatial attention focuses on critical temporal regions. These
attention modules enable dynamic feature weighting, improving ro-
bustness and accuracy. Fig. 5 illustrates how this process facilitates
seamless integration across modalities.

The fused representation is used to estimate a probabilistic dis-
tribution of the possible prediction values, as illustrated in Fig. 6.
We characterize this distribution as a Gaussian distribution, whose
mean and standard deviation parameters can be modeled as two
neural networks. The final layer of the model outputs two values
µ(x) and δ (x), which correspond to the predicted mean value and
standard variation. By treating the ground truth cognitive load value
as a sample from the Gaussian distribution parameterized by µ(x)
and δ (x), following the idea in [39], we use a stochastic gradient
descent algorithm to train the machine learning model end to end



by minimizing the negative log-likelihood as in Equation 3:

−logpθ (yn | xn) =
logσ2

θ
(xn)

2
+

(yn −µθ (xn))
2

2σ2
θ
(xn)2 + constant (3)

The proposed model offers several advantages. It achieves real-
time inference by leveraging efficient feature extraction and sliding
window normalization. The probabilistic framework not only pre-
dicts cognitive load but also estimates confidence intervals, aiding
decision-making under uncertainty. Robust multi-modal fusion in-
tegrates complementary signals, enhancing prediction accuracy and
mitigating noise impacts. Furthermore, the architecture is adaptable
to diverse datasets and application scenarios, ensuring broad appli-
cability in VR contexts.

The model was trained using a single NVIDIA GeForce GTX
1080Ti GPU with PyTorch as the deep learning framework. The
data was processed in batches of 32 samples. The Adam optimizer
was employed with a learning rate of 0.0001, and a learning rate de-
cay was applied every 10 epochs using a StepLR scheduler with a
decay factor (gamma) of 0.3. Training was conducted for 12 epochs
with early stopping and model checkpointing enabled. For deploy-
ment, the trained model was converted to ONNX format.

6 RESULTS AND DISCUSSION

6.1 Result

Figure 8: Cognitive load prediction for a test user through time
(red). The black dots represent the ‘ground truth’ cognitive load
score, which is determined for each task by Eq. 2 in section 4.3.
Based on the prediction of cognitive load variance, the lower and
upper bounds of cognitive load prediction are illustrated as the
brown region (one standard deviation of the variance) and the blue
region (two times standard deviation of the variance).

We evaluate the efficacy of our proposed method by training the
model on a comprehensive dataset comprising physiological mea-
surements from 638 individuals and subsequently testing its gen-
eralizability on an independent dataset from 100 individuals, the
latter of which has been made publicly available to facilitate re-
producibility and further research. The testing dataset includes di-
verse physiological signals, specifically pupilometry/eye tracking
data and photoplethysmography (PPG) signals, which serve as in-
put modalities for cognitive load and task difficulty level prediction.
The testing data are made available to the public. A one dimen-
sional CNN model is used to learn representations from temporal
feature sequences and multiple layer perception is used to predict
the cognitive load levels, the residual within each level, and the un-
certainty variation. The model is trained end-to-end using a Pytorch
implementation of stochastic gradient descent with mini-batches of
32 data samples.

Table 4 presents the evaluation results, demonstrating that our
method achieves a mean absolute error (MAE) of 0.11 in predict-
ing cognitive load by effectively fusing information from both pupi-
lometry/eye tracking data and the PPG signal. This performance
indicates a high degree of precision in cognitive load estimation,

Table 4: Inference Engine Evaluation using Multimodal Inputs

Fusion
Model

Tobii
Model

PPG
Model

Cognitive Load Prediction
(Mean Absolute Error)

0.1105 0.1131 0.1755

Task Difficulties Prediction
(Accuracy)

78.82% 73.45% 53.42%

underscored by the model’s ability to integrate multi-modal physi-
ological data.

Figure 9: Confusion Matrix for Task Difficulty Level Prediction

Furthermore, the model exhibits a ”by-product” capability in
predicting task difficulty levels, attaining a best classification accu-
racy of 78.82% using the fusion approach. This dual-task function-
ality not only enhances the model’s utility but also leverages shared
feature representations to improve prediction accuracy across re-
lated tasks.

The confusion matrix (Fig. 9), based on one of our training re-
sults, give a view of the model’s classification performance. These
results indicate that the model distinguishes low task difficulty lev-
els effectively, but often confuses medium and high difficulty lev-
els. One possible explanation for this is that many participants’
cognitive load may have become saturated with the medium diffi-
culty stimuli, making it more difficult to differentiate from the high
difficulty stimuli. However, we note that the model uses this task
difficulty prediction internally and does not report it as part of the
predicted cognitive load score. The resulting cognitive load score
performed reasonably well in terms of MSE, despite this confusion
rate because of categorical overlap that can be observed in Figure 3.
In other words, the scores overlap such that a low mental workload
rated experience in a high difficulty stimulus task scores the same
as a high mental workload rated experience in a medium difficulty
stimulus task.

Figure 8 illustrates the cognitive load predictions for a represen-
tative user during the testing phase. The majority of predictions
fall within one standard deviation of the estimated uncertainty, un-
derscoring the model’s reliability and the effectiveness of its uncer-
tainty quantification. This uncertainty estimation is derived from
the regression head’s ability to predict both the mean cognitive load
and its associated variance, providing valuable insights into the con-
fidence of each prediction.

6.2 Early Wins
Our efforts in demonstrating the use of real-time cognitive load
inference across various scenarios, such as learning and training
in VR applications, extend beyond mere prototyping. Its success
during the incubation phase, where off-the-shelf hardware was em-
ployed, has led to the creation of HP Reverb G2 Omnicept Edi-
tion commercial VR headset. The cognitive load models have since
been refined using data collected through the HP Reverb G2 Om-
nicept Edition headsets, resulting in a more robust and integrated



solution.
Our cognitive load inference model is now actively deployed and

being utilized in diverse real-world applications by both researchers
and developers. For example, the company Ovation VR is using
the cognitive load inference to implement assessment and adap-
tive learning for public speaking training. Another company called
PIXO uses the measure to provide real-time feedback for virtual re-
ality training across industries such as construction, manufacturing
and public safety. The cognitive load inference is also widely used
by academic researchers to study areas such as virtual commerce in
VR [60], VR gaming [36], and virtual assistant in driving [61].

6.3 Implications for Designers
Cognitive load can improve training as a predictor of performance
(Fig. 10). Yerkes-Dodson [59] describes an inverted U-curve link-
ing cognitive load and performance. Excessive work load leads to
cognitive overload, errors, and inefficiency, while minimal load re-
sults in disengagement and reduced focus. The optimal ”Goldilocks
zone” balances challenge and engagement for peak performance.

Cognitive load can also improve training as a predictor of exper-
tise, particularly when combined with measures of performance.
Early training shows high load and low performance, which im-
proves as proficiency grows. Mastery occurs when performance
peaks and load stabilizes in the optimal range. Tracking this re-
lationship helps streamline training by focusing on areas needing
improvement.

Figure 10: Cognitive Load as a predictor of performance. Perfor-
mance is optimal when cognitive load is in the Goldilocks zone.

6.4 Limitations and Future Work
The cognitive load inference engine can be improved over time by
accounting for some of the limitations in this dataset. Since this
open dataset was collected, we have expanded our data collection
activities to include data from several additional locations across the
world, including data from participants in Africa, Asia, and North
America. The pervasive bias in AI can be further mitigated and one
way to do that is by collecting data from as wide a sample of the
general population as possible. Our current multi-tasking paradigm
varies in both difficulty and modality but we have not, yet, tested
our models in other types of cognitive load contexts (e.g., with time
or social evaluative pressure, with motor load, with continuously
increasing difficulty). Including new manipulations of load will in-
crease the inference engine capability of generalization. This work
can be expanded by exploiting particular features of virtual envi-
ronments as well.

The goal of this paper is to develop a person-independent cog-
nitive load inference model that requires no calibration so that it
can be easily integrated into VR applications. In practice, signifi-
cant inter-individual variability in physiological responses to work-
load makes it challenging to apply a universal set of cognitive load

measures across all individuals. One next step for our work could
involve developing a cognitive load model fine-tuned to individu-
als or specific groups based on personal traits such as age, gen-
der, or educational background, which could significantly enhance
the system’s ability to detect cognitive load. Additionally, if suffi-
cient training data is available for an individual, the model could be
fine-tuned to accurately reflect that person’s unique characteristics.
However, implementing such customizations to address individual
differences in cognitive load assessment would require additional
data collection, design, and engineering considerations for effec-
tive integration into VR applications.

Additionally, having fine-grained ground truth labels is criti-
cal for achieving real-time cognitive load inference. Relying on
a single measure, such as self-reports, task difficulty, or task per-
formance, as the ground truth for cognitive load presents signifi-
cant challenges. An innovative approach that cross-references these
measures could provide a more robust and reliable method for la-
beling cognitive load. However, this will require more fundamental
research in cognitive load theory and measurement.

Cognitive load inference using physiological sensors holds great
promise but faces practical challenges in real-world applications.
For instance, dynamic physical activities, such as sports, often in-
volve rapid and unpredictable movements that can introduce noise
and artifacts into physiological signals like photoplethysmography
(PPG) or eye-tracking data. Mitigating these effects requires ad-
vanced signal processing techniques, such as adaptive filtering and
motion-compensation algorithms. Lighting interference within VR
headsets can also impact the accuracy of PPG or eye-tracking sys-
tems. Addressing this issue necessitates the development of robust
sensors with enhanced shielding against ambient light and algo-
rithms designed to compensate for lighting variations effectively.

While we have developed a neural network for cognitive load in-
ference, future work should include a comprehensive performance
analysis comparing traditional methods and emerging architectures,
focusing on both cognitive load prediction and uncertainty quan-
tification. This will help establish a robust baseline for machine
learning-based cognitive load inference research.

After all, we hope this paper and dataset serve as valuable re-
sources for technologists, researchers, and machine learning sci-
entists, fostering further advancements and discussions within the
scientific community. We encourage researchers of all stripes to
test, validate, and reach out to our team with questions, thoughts, or
insights.

6.5 Conclusion

Researchers are increasingly studying VR for training and learning.
One of the more robust findings from this recent research is that the
very high presence that makes VR so engaging and compelling also
causes cognitive load, and interferes with learning (See Makransky
& Mayer [32] for a recent review, or Bailey et al. [6] for an early
example). This is a frustrating combination – when VR is at its best
and users are highly engaged perceptually and psychologically, the
medium can interfere with learning. Our findings provide a possible
solution to this problem by detecting cognitive load dynamically
one can modulate presence to ensure learning proceeds optimally.

In this paper, we present a pioneering large-scale study aimed
at devising a machine learning model that can reliably predict real-
time mental effort in VR. We collected physiological, self-report,
and task data from more than seven hundred participants who com-
pleted mentally demanding tasks of increasing difficulty. We devel-
oped an innovative data filtering and labeling pipeline, and trained
a multi-modal, fusion model that predicted real-time cognitive load
with low error. We are also making available our test dataset to
advance the research community’s resources. This comprehensive
dataset contains multi-modal data from 100 distinct users, serving
as a pivotal resource for future investigations in the domain.
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Machine learning for cognitive load classification–a case study on
contact-free approach. In IFIP International Conference on Artificial
Intelligence Applications and Innovations, pp. 31–42, 2020. 2

[3] P. Ayres. Impact of reducing intrinsic cognitive load on learning in
a mathematical domain. Applied Cognitive Psychology, 20:287–298,
2006. 2

[4] A. D. Baddeley and G. Hitch. Working memory. vol. 8 of Psychology
of Learning and Motivation, pp. 47–89. Academic Press, 1974. doi:
10.1016/S0079-7421(08)60452-1 1, 2

[5] J. N. Bailenson, K. Swinth, C. Hoyt, S. Persky, A. Dimov, and J. Blas-
covich. The independent and interactive effects of embodied-agent
appearance and behavior on self-report, cognitive, and behavioral
markers of copresence in immersive virtual environments. Presence:
Teleoper. Virtual Environ., 14(4):379–393, Aug. 2005. doi: 10.1162/
105474605774785235 6

[6] J. Bailey, J. N. Bailenson, A. S. Won, J. Flora, and K. C. Armel. Pres-
ence and memory: immersive virtual reality effects on cued recall. In
Proceedings of the International Society for Presence Research An-
nual Conference, vol. 10, pp. 24–26, 2012. 9

[7] L. F. Barrett, R. Adolphs, S. Marsella, A. M. Martinez, and S. Pollak.
Emotional expressions reconsidered: Challenges to inferring emotion
from human facial movements. Psychological Science in the Public
Interest, 20:1 – 68, 2019. 2

[8] M. Bartels and S. P. Marshall. Measuring cognitive workload across
different eye tracking hardware platforms. In Proceedings of the
Symposium on Eye Tracking Research and Applications, ETRA ’12,
p. 161–164. Association for Computing Machinery, New York, NY,
USA, 2012. doi: 10.1145/2168556.2168582 3, 4

[9] P. Biswas and G. Prabhakar. Detecting drivers’ cognitive load from
saccadic intrusion. Transportation Research Part F-traffic Psychology
and Behaviour, 54:63–78, 2018. 2

[10] H. Boril, S. O. Sadjadi, and J. Hansen. Utdrive: Emotion and cognitive
load classification for in-vehicle scenarios. 2011. 2

[11] S. Chen, J. Epps, and F. Chen. A comparison of four methods for
cognitive load measurement. Proceedings of the 23rd Australian
Computer-Human Interaction Conference, OzCHI 2011, 11 2011. doi:
10.1145/2071536.2071547 1

[12] P. Chwalek, D. Ramsay, and J. A. Paradiso. Captivates: A smart eye-
glass platform for across-context physiological measurement. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 5(3), sep 2021.
doi: 10.1145/3478079 2

[13] I. Cohen, N. Sebe, A. Garg, L. S. Chen, and T. S. Huang. Facial ex-
pression recognition from video sequences: Temporal and static mod-
eling. In Computer Vision and Image Understanding, pp. 160–187,
2003. 2

[14] N. Cowan. The magical mystery four: How is working mem-
ory capacity limited, and why? Current Directions in Psycholog-
ical Science, 19(1):51–57, 2010. PMID: 20445769. doi: 10.1177/
0963721409359277 1

[15] R. D. Dias, M. A. Zenati, R. Stevens, J. M. Gabany, and S. J. Yule.
Physiological synchronization and entropy as measures of team cog-
nitive load. Journal of Biomedical Informatics, 96:103250, 2019. doi:
10.1016/j.jbi.2019.103250 2

[16] M. Elgendi. Optimal signal quality index for photoplethys-
mogram signals. Bioengineering, 3(4), 2016. doi: 10.3390/
bioengineering3040021 5, 6

[17] R. Engle and M. Kane. Executive attention, working memory capacity,
and a two-factor theory of cognitive control. Psychology of Learning
and Motivation, 44:145–199, 2003. 1, 2

[18] E. Ferreira, D. Ferreira, S. Kim, P. Siirtola, J. Röning, J. F. Forl-
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