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HP Omnicept Face Tracking in VR 
 
The HP Omnicept face tracking solution was developed based on an HP Reverb G2 VR headset Omnicept 
edition. The HP Reverb G2 VR headset is equipped with a single infrared mouth camera to capture wearer’s 
lower face movement. In this technical report, we present a novel and robust machine learning solution for 
tracking face movement in real time using a single infrared mouth camera. To develop the machine learning 
solution, we collected quantifiable measures of real people’s facial movements according to the Facial 
Action Coding System (FACS) definition. These quantifiable measures are used to animate avatars in a 
virtual environment, and we capture the avatars facial movements with a virtual camera. These captured 
synthetic avatar facial data are used to train our multi-regression deep neural network face tracking model. 
We have demonstrated the robustness of our solution through both quantitative and qualitative analysis. 
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1. Introduction 

1.1 Face Tracking  

A real time face tracking solution in the virtual reality (VR) environment has the potential to 
enable a wide range of applications [1] [2]. From a user standpoint, retargeting natural expressions 
in the real world to an avatar in VR increases the sense of “reality” in the virtual world and 
improves the user’s experience in interacting with others. From an enterprise perspective, facial 
tracking data can give businesses insights into the emotional state of the user for marketing 
research purposes. In line with HP’s previous work on determining the mental workload of users 
from biometric sensors, facial tracking could provide additional information on the user’s true 
mental state and work in tandem with the cognitive load inference. For example, understanding 
the arousal level of a hard skilled worker undergoing training in a high-stakes task may suggest 
their confidence in completing the task. Alternatively, facial tracking in VR could uncover a user’s 
true emotional response to an advertisement. These are a few examples out of the plethora of 
business challenges that could be addressed with an AI model designed to track facial movements.   

1.2 Facial Action Coding System (FACS)  

A widely used tool for coding facial expressions known as the Facial Action Coding System 
(FACS) was introduced in [3]. It breaks down facial expressions into individual components of 
muscle movements, called Action Units (AUs). One action unit (AU) represents a facial mesh 
deformation from a neutral face to a specific semantically meaningful expression, and the intensity 
of the AU indicates the extent of the expression. In total, 46 AUs are decomposed from facial 
behaviors in FACS. There are complicated correlations among different AUs due to the diversity 
of facial expressions. Meanwhile, restraint also exists for the combination of AUs as the AU space 
is sparse, and a random combination of AUs may not produce realistic facial expressions [4].  

1.3 Review of Past Research 

In this section, we review two related topics to our work: Head-Mounted Displays (HMDs) 
and 3D modeling.  We will introduce the design details of different HMDs inputs and 3D face 
modeling from these inputs.  

1.3.1 Head-Mounted Displays (HMDs) Inputs 

Expression tracking relies on the type of data captured by the HMDs. Although most research 
focuses on image or video input, the electromyography (EMG) signal is another input form that 
supports a good prediction of facial expressions. In the following sections, we discuss face tracking 
works using either HMC or EMG input. 

(1) Headset Mounted Cameras (HMCs) 

Image or video input of HMCs is the most common method to detect facial muscle movement. 
Because the inference process requires an efficient expression tracking pipeline, the number and 
computational cost of HMCs need to be small. A single-view IR camera is the most lightweight 
choice for HMCs, but it provides limited information about the facial features when only a single 
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view is used. Several approaches have been proposed to compensate for the limitation and 
occlusion of HMC videos or images. For example, Wei et al. proposed to enrich the dataset by 
designing a training device that is different from the testing device. They generated a face tracking 
model with 9 IR HMCs for training and 3 IR HMCs for real-time testing [5]. In addition, the 
training device collects two more eye region views and four more mouth region views. While 
research in [6] used depth cameras and included 3 RGBD single-view cameras. The design of 
HMDs for testing and training is also different. Here, full-face four-channel videos were used as 
training data and partially occluded face videos were used in testing. This method has 
comprehensive information to build a face tracking model. The same research group proposed 
another RGB-based HMC design in 2016 [7], where a monocular RGB HMC is placed in front of 
the mouth to track speech and mouth movement while two IR cameras are used to track eye region 
motions. The combination of speech and eye animation shows good prediction results on specific 
users with selected expressions.    

(2) Electromyography (EMG) 

Integrated EMG sensors are more lightweight and ergonomically comfortable compared to 
HMCs, while the disadvantage comes from direct contact with the skin is required. With electrodes 
directly placed around facial muscles, the EMG signal has a large signal-to-noise ratio [8]. Lou et 
al. proposed an approach to recover facial action unit intensities from EMG signals in [9]. 
FACETEQ hardware [10] can be placed on the emotionally salient facial part (ESFP), which is 
around the eyes and nose region. Consequently, the sensors cover the forehead, cheek, and outer-
eye-corner regions. Seven action units could be predicted, including eyebrow movement, eye, and 
mouth openness, cheek raising, lip corner puller, and lip pucker.  

1.3.2 3D Modeling 

Reconstructing 3D facial expressions from a single 2D image is an active research topic in 
image processing and computer graphics. To construct a fully rigged 3D mesh, it is necessary to 
obtain a parameterized representation for 3D face synthesis. Given an input 2D image, one can 
obtain a representation that contains information related to face shape and appearance. Here, we 
introduce several commonly used 3D modeling methods, including 3D morphable modeling, 
active appearance modeling, deep appearance modeling, landmark fitting, and AU-related 
approaches.   

(1) 3D Morphable Model (3DMM) 

Different methods have been proposed for face tracking from monocular inputs. Some focus 
on using statistical models for facial texture and shape. A popular method is the 3D Morphable 
Model (3DMM) [11]. 3DMM is a statistical model that builds face shape and appearance based on 
the facial image data from 200 people. It parameterizes the human face into high dimensional 
subspaces to represent the 3D facial mesh in terms of face shape and texture. The authors proposed 
this statistical model as a parametric linear subspace with point-to-point correspondence that 
enables 3D face reconstruction from 2D images. Given a 2D face image, the method finds a point 
in this high dimensional subspace that represents a similar face. This task can be achieved by 
regressing the 3DMM face shape parameters using the 2D input image [12]. 
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(2) Active Appearance Modeling (AAM) 

Active Appearance Modeling (AAM) aims to match a given image to a statistical shape model 
that parameterizes the shape and appearance of an object. For facial tracking, AAM is able to 
successfully disentangle the shape and appearance using Principal Component Analysis (PCA) 
[13]. Similar to 3DMM-based approaches, given a 2D image, AAM-based methods focus on fitting 
AAM parameters accurately to reconstruct a 3D face with an expression [14]. However, AAM 
uses the entire face region to localize facial landmarks in order to establish correspondence 
between the training 3D face mesh and the input 2D image for more accurate estimation. In this 
case, the performance of such approaches would be restricted when the face is partially occluded, 
for example when wearing a VR headset. 

(3) Deep Appearance Modeling (DAM) 

Recently, with the emerging interest in the intersection between deep learning and computer 
graphics, Deep Appearance Modeling (DAM) has shown success in modeling human faces in 3D 
[15]. Using images captured by 40 cameras from different viewing angles, a Variational 
Autoencoder (VAE) [16] is used to model a data-driven avatar that learns a joint latent 
representation of face geometry and appearance. With view-point conditioning, VAE can 
disentangle the viewpoint-specific information from the latent representation of face geometry and 
appearance. By manipulating the latent variable, it can perform controllable a synthesis of the 
facial expression without modifying the facial geometry and identity of the given avatar. 

(4) Landmark Fitting Approach 

Incorporating landmark detection into 3D face modeling can add constraints for synthesis [17] 
[18]. Given a set of landmark points with the correspondence in the 3D face model, some 
techniques fit the 3D surface with the detected landmarks [19]. These approaches are accurate in 
terms of face tracking. However, it is unclear how well they perform if the face is partially 
occluded, especially when the occlusion affects the detection of facial landmarks. 

(5) Action Unit (AU) approach 

Research about the facial action unit is initially a classification problem to detect whether the 
action unit has been activated. For instance, Gwen et al. proposed a toolbox for facial expression 
recognition and action unit intensity estimation using Gabor filters and support vector machine 
(SVM) [20]. As more detailed datasets such as BP4D [21] and CK+ [22] became available 
including annotated intensity of action units, more researchers have been exploring AU intensity 
estimation. The regression problem associated with AU intensity estimation is typically based on 
six levels of intensities, ranging from 0 to 5. A heatmap-based hourglass network is proposed as 
the estimation model which is jointly combined with landmark detection in [23] [24]. To support 
high precision AU intensity estimation, a dataset with higher precision annotations was proposed 
which included two decimal points within the range 0 to 1 [25]. 
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1.4 Overview of Our Work 

We designed and developed a face tracking deep regression model which can predict AU 
intensities from a single facial image captured by a camera on the HP Reverb G2 VR headset.  

To train a deep learning model to predict the user’s AU intensities requires the AU intensity 
ground truth. Existing solutions involve labor-intensive AU labeling by annotators. It is even 
harder to collect such AU intensity ground truth considering that only half the face is visible when 
the user puts on a VR headset. In our work, we leverage synthetic data to train the deep learning 
model. We collect real people’s full face AU intensities, which are used to drive 3D virtual avatars 
in a virtual environment.  Synthetic partial facial images of these virtual avatars are captured. Using 
these synthetic data, we train a deep regression model to predict multiple AU intensities 
simultaneously. After model training, we take the video stream as input data to our model and 
receive the AU intensities as output. Then, we retarget the predicted expression onto an avatar to 
reenact expressions. We compared the visual result of each output expression with the ground truth 
input expressions. For the mouth region expressions, our method shows good prediction results 
both qualitatively and quantitatively. 

2. Data Collection and Generation  

    2.1 Real Facial Movement Data 

    To establish a ground truth of facial movement for our synthetic dataset, we collected facial 
action units as a quantifiable measure of expression intensities. Variations of facial AUs, or 
categorized muscle movements, moving together indicate meaningful expressions, such as a smile 
or frown. We designed a study, where participants were asked to demonstrate and record 16 mouth 
expressions using a full-face tracking solution. The face tracking solution records video data and 
outputs the corresponding AU intensities, which aligns closely with the facial AUs defined by the 
Facial Action Coding System [29]. Participants were asked to demonstrate a variety of mouth 
expressions, including closed mouth smile, open mouth smile, closed mouth frown, open mouth 
frown, pucker/pursed lips, anger teeth, mouth right, mouth left, mouth funnel, smile right, smile 
left, cheek squint right, cheek squint left, upper up right, upper up left, and cheek puff expressions, 
each for two times. 

    2.2 Avatar Generation 

We create a large collection of 3D virtual avatar faces with various facial attributes. The 
collection includes a diverse set of avatars with a balance of gender (male/female), ethnicity 
(white/black/Asian/Latin), and age (young/senior). The avatars we created cover a large variety of 
face colors, face shapes, and other face attributes (e.g., facial hair).  

2.3 Synthetic Data Generation 

In a virtual environment, an avatar wears a simulated HP Reverb G2 VR headset. IR images of 
the avatars are taken from the view angle of the camera on the VR headset while the avatars are 
animated using the collected AUs intensities of different expressions. Specifically, 23 mouth 
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region AUs were utilized to recreate expressions on avatars and build a synthetic dataset. The 23 
mouth AUs include mouth close, mouth funnel, mouth pucker, mouth left, mouth right, mouth 
smile (left & right), mouth frown (left & right), mouth dimple (left & right), mouth stretch (left & 
right), mouth roll (upper & lower), mouth shrug (upper & lower), mouth press (left & right), mouth 
lower down (left & right), and mouth upper up (left & right).  

To this end, we have built a synthetic data generation pipeline that supports large-scale data 
generation to train powerful deep learning models. With this paper, we make a representative set 
of our data available to the public.  

3. Deep Regression Model 

 3.1 Model Design 

Since deep neural networks have been proven effective in learning latent patterns in high-
complexity data (such as images) in the presence of a huge number of training data, we propose a 
deep regression network to predict the AU intensity of facial expressions. The deep regression 
network contains two parts. The first part is a backbone network to extract facial features and the 
second part is a regression network. We have compared a few neural network structures, such as 
EffNet [26], VGG-11 [27], and Inception-ResNet-V1 [28], to choose from as the backbone of our 
regression model. We balance model performance and model size during the model selection 
process. Inception-ResNet-V1 has a relatively large model size which does not fit our design 
requirement of deployment on an edge device. Among the network structures with large model 
sizes, VGG-11 performs the best, and EffNet has a comparable result. While comparing the Mean 
Absolute Error (MAE) and Pearson Correlation Coefficient (PCC) among the network structures 
with a small model size, our experiment results show that MobileNetV3 [31] has similar 
performance as EffNet. Although MobileNetV2 and ShuffleNet have smaller model sizes, 
MobileNetV3 is chosen as the backbone network for our baseline due to better prediction results. 
A MobileNetV3 model pre-trained on ImageNet [32] dataset is used in our neural network 
structure. The output of the first part is a facial feature vector. The second part is a regression 
network which consists of five fully connected layers and four activation layers, to predict the AU 
intensity from the feature vector that has been extracted.  

3.2 Model Training 

Figure 1 shows the avatar-independent face tracking model training process. We collected 
expressional AU intensity ground truth from participants, which are used to drive the 3D avatar’s 
facial movement. Then, synthetic images of the avatars (with different expressions) rendered from 
the VR camera viewpoint are provided as input to the model. The model output are AU intensities, 
the ground truth of which are the AU intensities collected from participants. 
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Figure 1. Avatar-independent face tracking model training pipeline. We train the deep regression 
model to predict facial action units. 

The deep regression model is trained on the synthetic expression images of avatars and the 
corresponding 23 target AU intensities. Each of the target AU intensities has a range of 0 to 100. 
The network output is a 23 AU intensity vector prediction. We use the Mean Absolute Error 
(MAE) of the 23 AU intensity ground truth and prediction as the loss function. The data synthesis 
process is described in Section 2.3. The model is trained on a diverse set of 116 virtual avatars 
with expressions from data collection, including 26 aged female avatars, 30 young female avatars, 
26 aged male avatars, and 34 male avatars. We use 164 synthetic frames from each avatar for 
model training. 

3.3 Evaluation 

    We evaluated the quantitative result of the model trained on 116 avatars and tested on 6 avatars 
(3 female avatars and 3 male avatars). The test dataset includes 162 images for each avatar. The 
evaluation of AU intensities employs the metrics of Mean Absolute Error (MAE) and Pearson 
Correlation Coefficient (PCC). The AU ground truth and prediction ranges are both 0 to 100, and 
we have achieved a test MAE value of 2.39. The PCC value is 0.964. The quantitative result 
demonstrates the effectiveness of our proposed deep regression model.  

4. Expression Reenactment via Face Tracking     

    We further built a facial expression reenactment application based on our trained face tracking 
model. Figure 2 shows the overall system, which is composed of four parts: data preprocessing, 
deep learning model, postprocessing, and avatar reenactment.  
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Figure 2. Overall system of user’s expression reenactment on an avatar via face tracking 

    4.1 Data Preprocessing 

    As the user may wear the VR headset in varying lighting conditions, the captured mouth image 
is possible to suffer from overexposure or underexposure. We preprocess the facial images of the 
VR headset user before applying the model to make sure our model works well in all kinds of 
working environments. In our work, Adaptive Histogram Equalization [30] is used to process 
captured IR images to improve the lighting conditions. Specifically, we adopt the contrast-limited 
adaptive histogram equalization (CLAHE) algorithm, which improves contrast within images. The 
algorithm is adaptive in that different images (and more specifically, different regions of an image) 
may have their contrast amplified by different amounts. In a contrast-limited implementation, it 
limits the amount of contrast amplification in any region of an image. 

    4.2 Deep Learning Model 

After image preprocessing, we employ our trained deep learning model to track the user’s facial 
AU intensities. We converted the trained model into ONNX format and integrated the ONNX 
model into our real-time facial tracking application for an HP Reverb G2 Omnicept headset.  

    4.3 Postprocessing and Expression Reenactment 

Once we get the prediction of the deep regression model, we apply a moving average filter to 
the predicted AU intensity with a window size of 5 (previous 5 predictions) to smoothen the output. 
The window size is chosen as a trade-off between latency and filtering effect. A larger window 
size will increase the latency of the overall model, and a smaller window size will give a weak 
filtering effect. After the model outputs the AU intensity prediction, we apply the prediction on a 
3D avatar in a game engine to reenact the user’s facial expression for visual evaluation and 
assessment.  
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    4.4 Evaluation 

    Our current model has been validated on a certain cohort of avatars. We rendered 3D virtual 
avatars with tracked facial expressions to visually evaluate our face tracking model. We also tested 
our face tracking model on a user wearing the headset and performing the same set of 16 
expressions in the training process. As we aim to test the user-independent performance of the 
model, we did not include the user’s avatar in the training set to eliminate the model’s exposure to 
the face geometry and attributes of the test user beforehand. We present example test results on 
the real user in Figure 3. From the figure, we can see all the 16 expressions were recognized and 
transferred successfully with high fidelity onto the virtual avatar. During online testing, we have 
not witnessed any observable latency due to the small footprint and acceptable computing 
consumption of the inference model. To this end, we have validated the feasibility and usability of 
the facial tracking and reenactment system using our face tracking model.  

 

Figure 3. Results on a real user wearing the VR headset. For each pair, the left is the input IR 
image captured by the mouth IR camera on VR headset, and the right is the face tracking result 
reenacted on a virtual avatar. From left to right, top to bottom are respectively expressions: neutral 
face, mouth left, mouth right, closed mouth smile, open mouth smile, cheek squint left, cheek 
squint right, cheek puff, pucker, upper up left, upper up right, mouth funnel, frown, anger teeth. 

5. Conclusion 

    VR headset-based facial tracking and reenactment will enable a more immersive user experience 
and open more opportunities in healthcare, education, and training domains. We designed and 
implemented the facial tracking solution using only one single VR headset infrared (IR) camera to 
track the user’s facial expression. We built a prototype demo on an HP Reverb G2 Omnicept VR 
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headset to track the user’s face and reenact a virtual 3D avatar to imitate the user’s expression in 
real time. In this technical report, we presented the deep learning face tracking approach and its 
training process and demonstrated an AI-based facial expression reenactment system using our 
deep learning model. Based on the quantitative and qualitative results on synthetic human faces 
and a real user, we have proven the usability and efficacy of our proposed method and the system.  
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[23] E. S ánchez-Lozano, G. Tzimiropoulos, and M. F. Val- star, “Joint action unit localisation and intensity 
estimation through heatmap regression,” British Machine Vision Conference, May 2018, Newcastle, UK.  

[24] Y. Fan and Z. Lin, “G2RL: Geometry-guided representation learning for facial action unit intensity 
estimation,” Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 
731–737, Jul. 2020, Yokohama, Japan.  

[25] Y. Yan, K. Lu, J. Xue, P. Gao, and J. Lyu, “FEAFA: A well- annotated dataset for facial expression analysis 
and 3D facial animation,” 2019 IEEE International Conference on Multimedia and Expo Workshops, pp. 
96–101, Jul. 2019, Shanghai, China. 

[26] I. Freeman, L. Roese-Koerner, and A. Kummert, “Effnet: An Efficient Structure for Convolutional 
Neural Networks,” in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018. 

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 
arXiv [cs.CV], 2014. 



  
 

Page 12 of 12 
 

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the impact of 
residual connections on learning,” Proc. Conf. AAAI Artif. Intell., vol. 31, no. 1, 2017. 

[29] P. Ekman and E. L. Rosenberg, What the Face Reveals: Basic and Applied Studies of Spontaneous 
Expression Using the Facial Action Coding System (FACS). 2012. doi: 
10.1093/acprof:oso/9780195179644.001.0001. 

[30] S. M. Pizer et al., “Adaptive Histogram Equalization And Its Variations,” Compute Vis Graph Image 
Process, vol. 39, no. 3, 1987, doi: 10.1016/S0734-189X(87)80186-X. 

[31] A. Howard et al., “Searching for mobileNetV3,” in Proceedings of the IEEE International Conference 
on Computer Vision, 2019, vol. 2019-October. doi: 10.1109/ICCV.2019.00140. 

[32] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” International Journal of 
Computer Vision, vol. 115, no. 3, 2015, doi: 10.1007/s11263-015-0816-y. 


